Shuttlelager Teil 10 – Hat das Regalbediengerät noch Zukunft?

Wir gehen davon aus, dass beide Systeme koexistieren werden. Die Anforderungen am Markt sind zu unterschiedlich, dass ein System jegliche Lösungsmöglichkeiten abbilden könnte. Wir haben deshalb ein System entwickelt, dass Shuttle und RBG kombiniert. Wir nennen diese Lösung Dynamic Handover System (DHS). Mit einer DHS Lösung kann die Leistung eines RBGs mehr als verdoppelt werden, während der Energieverbrauch halbiert wird. Beide Systeme können bei DHS ihre Vorteile ausspielen und schaffen eine vorteilhafte Lösung für Anforderungen, die sich im Grenzbereich zwischen Shuttle und RBG liegen. Ein Referenzkunde konnte auf die Hälfte seiner RBG Gassen verzichten und im Vergleich zu einer Shuttle Lösung einen großen Teil der Investitionssumme sparen.

Shuttlelager Teil 9 – Wofür eignet sich ein Shuttle Lager derzeit nicht?

• Langsam drehendes Lager bei gleichzeitig enorm hohem Lagervolumen
• Schwerlasttablare (z.B. 300kg)
• hohe Reinraumklassen
• Ex-Schutz Bereich

Shuttle mit Hub:

Shuttle ohne Hub:

Shuttlelager Teil 8 – Gross und hochfrequent oder klein und hochflexibel? Für welches Lager eignen Shuttles sich besser?

Durch die hohe Flexibilität eines Shuttlelagers kann es im Rahmen der Projektierung an beide Kundenanforderungen angepasst werden. Maßgebend ist das Konzept der Heber in der Vorzone und der Shuttleanzahl. Bei geringeren Durchsätzen bietet sich ein System mit einem Heber und weniger Shuttles als das Regal Ebenen hat an. Ist hingegen ein großer Durchsatz notwendig, kann jede Ebene mit einem Shuttle ausgestattet werden. Zum vertikalen Transport der Fördergüter kommen kontinuierliche Heber zum Einsatz.

Mischformen können auch Anforderungen erfüllen, die zwischen den beiden genannten Beispielen liegen. Diese stehen meißt jedoch in Konkurrenz mit klassischen RBG Lösungen. Zusammenfassend kann der Einsatzbereich von Shuttles wie folgt charakterisiert werden. Shuttlesystem eignen sich in den Grenzbereichen klassischer Regalbediengeräte, sowie in Lagern die flexibel auf veränderliche Anforderungen reagieren müssen.

Shuttlelager Teil 7 – Wo sind Shuttle Systeme eindeutig überlegen?

  • Shuttlesysteme sind RBGs dann überlegen, wenn das System bei gleichbleibender Lagerkapazität zukünftig eine höhere Leistung bieten muss.
  • Shuttles sind RBGs eindeutig überlegen, wenn hohe Leistungen nachgefragt werden.
  • Shuttles sind RBGs überlegen bei niedrigen Hallenhöhen (geringes Anfahrmaß)
  • Shuttles sind in der Regel kostengünstiger im sehr niedrigen Leistungsbereich
  • Shuttles eignen sich sehr gut als Pufferlager und zur Sequenzierung

Shuttlelager Teil 6 – Ist ein Shuttle System preiswerter als eine Regalbediengeräte Lösung?

Ein seriöser Kostenvergleich ist nur möglich, wenn verschiedene Systeme mit gleichen Parametern hinsichtlich Leistung, Kapazität bezogen auf die benötigte Fläche, Energieverbrauch und Verfügbarkeit verglichen werden. Hinzu kommen weiche Faktoren wie beispielsweise die Flexibilität, Variabilität und Skalierbarkeit. Passen die Kundenanforderungen auf eine klassische RBG-basierte AKL Lösung, hat ein Shuttlesystem es schwer, preislich auf ein ähnliches Niveau zu kommen. Demgegenüber kann ein Shuttlesystem aus einer Gasse deutlich mehr Leistung generieren als mehrgassige RBG Läger. Hier wäre das Shuttlelager günstiger. Da dies eine komplexe Aufgabe darstellt, haben wir Software Tools entwickelt, die die passende Lösung ermitteln. Sprechen Sie uns an!

Shuttlelager Teil 5 – Kernfragen bei der Entscheidung Shuttle vs. Regalbediengerät

Diese Fragen sollten sie sich im Verlauf der Lagerplanung zunächst selbst und später den Anbietern von Lager- und Fördertechnik stellen:

  • Welche Umschlagsleistung benötige ich wirklich?
  • Welche Lagerkapazität ist notwendig?
  • Wie wichtig sind Energieeffizienz und Verfügbarkeit?
  • Wie viel möchte ich investieren?
  • Verändern sich meine Anforderungen an die oben genannten Punkte in Zukunft?

Die Antworten auf diese Fragen sind alles andere als einfach und bedürfen einer intensiven Betrachtung der Rahmenbedingungen. Sprechen Sie uns an!

Shuttlelager Teil 4 – Shuttle vs. Regalbediengerät

Im Vergleich zum RBG kann folgendes festgestellt werden: Das untere Anfahrmaß ist im Vergleich zu RBG sehr gering, da eine zentrale Fahrschiene sowie das Fahrwerk entfällt. Bei nachträglichen Erweiterungen erweist sich ein Shuttlelager als flexibler, da keine festinstallierte Gangausrüstung wie bei RBG benötigt wird. Ebenso muss bei Shuttlelagern nicht auf ein vorteilhaftes Längen-/Höhenverhältnis geachtet werden. Wird bei einem klassischen AKL mit RBG die Fahrgasse verlängert, führt dies zu einer Diskrepanz von Hub- und Fahrgeschwindigkeit. Ein RBG ist konstruktionsbedingt auf quaderförmige Bauform angewiesen. Das Shuttlelager hingegen kann sich gegebenen Gebäudestrukturen anpassen.

Ein Shuttlelager eignet sich für Einsätze im Hochleistungsbereich bis 1000 DS/h pro Gasse, wo RBG nicht konkurrenzfähig sind. Außerdem eignet es sich auch im unteren Leistungsbereich, wo ein Regalbediengerät überdimensioniert wäre. In diesem Fall können wenige Shuttlefahrzeuge die geforderte Leistung erfüllen. Shuttlefahrzeuge haben ein vorteilhaftes Verhältnis von Nutz- zu Gesamtlast. Das GEBHARDT StoreBiter OLS Shuttle weist ein Verhältnis von Nutz- zu Gesamtlast von beinahe 1:1 auf. Bezogen auf die Lagerung eines Behälters ergibt sich so ein sehr geringer Energieverbrauch. Auch durch die Notwendigkeit der Vertikalförderer ist der Gesamtenergiebedarf noch als gering zu betrachten. Die Höhe eines Shuttlelagers ist im Gegensatz zu einem Lager mit RBG nicht durch die Toleranzen des Regals begrenzt, da dieses steifer ausgeführt werden kann. Die Regalsteher werden zusätzlich durch die Fahrschienen verbunden, außerdem können in deren Schatten zusätzliche Verstrebungen angebracht werden. Ungenauigkeiten und Toleranzen lassen sich damit ausgleichen. Die Verfügbarkeit eines Shuttlesystems ist durch die Vielzahl paralleler und unabhängiger Bewegungen trotz der größeren Anzahl bewegter Teile höher. Ein Stillstand des Vertikalförderers führt jedoch zu einem Ausfall des gesamten Systems. Da Vertikalfördere in der Regel jedoch zuverlässig arbeiten, ist die Verfügbarkeit eines Shuttlesystems höher als bei Regalbediengeräten. Zudem kann die Ausfallwahrscheinlichkeit durch zusätzliche Vertikalförderer reduziert werden.

Zusammenfassung:

  • Flexibilität durch Skalierbarkeit der Anzahl von Hebern und Shuttles.
  • Im Vergleich zum RBG kann folgendes festgestellt werden: Das untere Anfahrmaß ist im Vergleich zu RBG sehr gering, da eine zentrale Fahrschiene sowie das Fahrwerk entfällt –> Vorteil bei niedrigen Lagern, ggf. höhere Kapazität
  • Bei nachträglichen Erweiterungen erweist sich ein Shuttlelager als flexibler, da keine festinstallierte Gangausrüstung wie bei RBG benötigt wird.
  • Ebenso muss bei Shuttlelagern nicht auf ein vorteilhaftes Längen-/Höhenverhältnis geachtet werden. Wird bei einem klassischen AKL mit RBG die Fahrgasse verlängert, führt dies zu einer Diskrepanz von Hub- und Fahrgeschwindigkeit.
  • Ein RBG ist konstruktionsbedingt auf quaderförmige Bauform angewiesen. Das Shuttlelager hingegen kann sich gegebenen Gebäudestrukturen anpassen.
  • Ein Shuttlelager eignet sich für Einsätze im Hochleistungsbereich bis 1000 DS/h pro Gasse, wo RBG nicht konkurrenzfähig sind. Außerdem eignet es sich auch im unteren Leistungsbereich, wo ein Regalbediengerät überdimensioniert wäre. In diesem Fall können wenige Shuttlefahrzeuge die geforderte Leistung erfüllen.
  • Shuttlefahrzeuge haben ein vorteilhaftes Verhältnis von Nutz- zu Gesamtlast. Der Gebhardt StoreBiter OLS Shuttle weist ein Verhältnis von Nutz- zu Gesamtlast von beinahe 1:1 auf. Bezogen auf die Lagerung eines Behälters ergibt sich so ein sehr geringer Energieverbrauch.
  • Der Gesamtenergiebedarf ist abhängig von der Anzahl der Shuttles und Hebern. Bezogen auf die verfügbare Leistung ist der Energieverbrauch gering, jedoch absolut nicht zwingend niedriger als bei einem RBG
  • Die Höhe eines Shuttlelagers ist im Gegensatz zu einem Lager mit RBG nicht durch die Toleranzen des Regals begrenzt, da dieses steifer ausgeführt werden kann. Die Regalsteher werden zusätzlich durch die Fahrschienen verbunden, außerdem können in deren Schatten zusätzliche Verstrebungen angebracht werden. Ungenauigkeiten und Toleranzen lassen sich damit ausgleichen.

Shuttlelager Teil 3 – Gestaltung von Shuttlelagern

Shuttlefahrzeuge und Schienen sind platzsparend zu konstruieren, um insbesondere ein vorteilhaftes Höhenraster zu erreichen. Die Höhe der Fahrschiene ist entscheidend für die erreichbare Raumnutzung, da diese in jeder Lagerebene anfällt und Behälter mit einem größeren, vertikalen Abstand gelagert werden als eigentlich notwendig.

Die Raumnutzung und die Lagerkapazität sind daher, auch durch die Notwendigkeit der Vertikalförderer, geringer als bei Hubbalken oder Regalbediengeräten. Der Flächenbedarf ist hingegen nahezu gleich. Die Schiene weist in der Regel eine hohe Funktionsintegration auf. Sie übernimmt die Funktionen der Positionierung, Energieübertragung, Tragen und Führen des Shuttles, sowie Sicherheitsfunktionen. Die Datenübertragung erfolgt üblicherweise über WLAN (Wireless Local Area Network) oder Bluetooth. Das Regal muss derart ausgeführt sein, auftretende Kräfte durch die Fahrbewegung, auch im Fehlerfall, aufnehmen zu können. Die Kosten für das Regal sind deshalb höher als bei Systemen, die keine oder nur geringe Kräfte in das Regal einleiten.

20131013-185619.jpg

Shuttlelager Teil 2 – Grundlagen (2/2)

Ein Shuttlelager besteht aus den Komponenten:

– Shuttlefahrzeug mit oder ohne Hubfunktion
– Vertikalförderer
– Schienensystem
– Regal
– Fördergut
– Steuerung
– Übergabefördertechnik

Shuttlefahrzeuge, die konstruktiv nicht an eine Gasse gebunden sind, können sich autonom bewegen und somit Aufgaben in verschiedenen Ebenen oder Gassen des Regals übernehmen. Hierzu sind entsprechende Umsetzeinrichtungen notwendig. Shuttlefahrzeuge können auch als Ersatz für automatische Stetigförderer eingesetzt werden, um Transportstrecken außerhalb des Regals zu überbrücken. Entsprechend müssen die Shuttles derart ausgeführt sein, dass sie das Regal verlassen und auf dem Hallenboden oder einem Schienensystem verfahren können.

Energieeffizienz in der Intralogistik: Kosten senken, Umwelt schonen.

Energieverbrauch_01Im Rahmen der Nachhaltigkeitsinitiative Blue Competence des VDMA übernimmt GEBHARDT umfassende Verantwortung für Ökonomie, Ökologie und Gesellschaft. Ziel ist die Minimierung des Energie- und Ressourcenverbrauchs durch innovative Technologien.

Optimierungsmöglichkeiten des Energieverbrauchs

Der Energieverbrauch hängt nicht allein von der automatischen Förder- und Lagertechnik ab. Der größere Teil des Energieverbrauchs betrifft Heizung/Lüftung, Beleuchtung und sonstige Verbraucher. Deshalb ist es notwendig einen ganzheitlichen Ansatz zu wählen, wenn der Energieverbrauch gesenkt werden soll. Neben der Förder- und Lagertechnik ist deshalb die Gebäudetechnik von Bedeutung. Großen Einfluss haben zudem die Prozesse und Abläufe des Betriebs.

Kosten senken und die Umwelt schonenAnteiliger_Energieverbrauch_Automatiklager_01

Die Blue Competence Initiative des VDMA hilft bei der Suche nachhaltiger Produkte und nachhaltig agierender Unternehmen. GEBHARDT hat sich früh entschieden seine Produkte und Dienstleistungen unter die Blue Competence Flagge des VDMA zu stellen. Für uns ist es seit jeher das Ziel Maschinen so zu entwerfen, dass der Energieverbrauch möglichst gering ist. Gerade in Zeiten steigender Energiepreise gewinnt dieses Ziel zunehmend an Bedeutung. GEBHARDT verbindet dazu innovative Software mit innovativer Mechanik. Doch eine Optimierung, die lediglich Einzelkomponenten einbezieht, hebt nur einen kleinen Teil des Optimierungspotentials. Vielmehr muss das intralogistische Gesamtsystem betrachtet werden. Die Reduktion des Energieverbrauchs geht oftmals einher mit dem ebenfalls willkommenen Effekt der Verschleißreduktion. Beides zusammen reduziert die Betriebskosten und macht das Logistikzentrum effizienter und kostengünstiger. Eine Visualisierung des Energieverbrauchs rundet das Energiemanagement ab.

Anbieter automatischer Intralogistikanlagen haben vielfältige Möglichkeiten den Energieverbrauch im Logistikzentrum zu beeinflussen:

Leichtbau

Besonders im Bereich Lagertechnik gilt es gezielten Leichtbau umzusetzen, denn die Reduktion der bewegten Masse ist der erste Schritt zur Minimierung des Energieverbrauchs. Bei der Produktentwicklung sind hierzu umfangreiche Simulationswerkzeuge, wie beispielsweise FEM, notwendig. Dies führt zur Verwendung innovativer Materialien und Fügeverfahren, wie dem Kleben. Das Verbundwerkstoff-RBG Cheetah ist hier der Vorreiter in der Branche.

Dynamikanpassung / Run on Demand

Die Last in Logistikzentren und damit auch in Automatischen Kleinteilelagern schwankt im Tagesverlauf zum Teil erheblich. Hier liegt ein großes Einsparpotential. Durch intelligente Dynamikanpassung lässt sich insbesondere an der Fahrachse erheblich Energie einsparen. Intelligente Algorithmen analysieren die Auftragslast und passen automatisch die Dynamikwerte der Lagertechnik an. Auch Fördertechnik sollte nur dann laufen, wenn es auch etwas zu fördern gibt. Deshalb ist es wichtig, eine intelligente Abschaltung von Antrieben zu integrieren. Auch die Dynamik der Fördertechnik kann an die Auftragslast angepasst werden. Intelligente Software sorgt dafür, dass die Leistung mehrerer Intralogistik-Komponenten synchronisiert und auf einander abgestimmt wird. So wird nur die Energie verbraucht, die tatsächlich benötigt wird.

Zwischenkreiskopplung bei RBG

Die Zwischenkreiskopplung steht für die intelligente Ansteuerung der Fahr- und Hubachse. Ziel ist die minimale Fahr- und Hubzeit für eine maximale Anzahl Doppelspiele bei minimalem Energieverbrauch. Dazu wird freiwerdende Energie, beispielsweise beim Bremsen der Fahrachse, auf die Hubachse umgeleitet, um die notwendige Bewegung der Hubachse zu versorgen. Diese Lösung amortisiert sich meißt sofort und sorgt für eine Reduktion des Energieverbrauchs um bis zu 20%.

Rückspeisung bei RBG

Die im System freiwerdende, generatorische Energie in Form von Bewegungs- und Lageenergie wird über ein Netzrückspeisegerät mit dem Umrichterzwischenkreis der Frequenzumrichter gekoppelt. So kann generatorische Energie, die nicht in einer weiteren Achse nutzbar ist, in das Netz zurückgespeist werden. Mit dieser Technologie können RBG bis zu 50 % Energie einsparen. Die Amortisierung liegt bei Paletten-RBG bei ca. 2 Jahren.

Software

Intelligente Software zur Energieeinsparung umfasst vielfältige Funktionen. Neben der Dynamikanpassung muss der zurückzulegende Weg analysiert und minimiert werden, beispielsweise mittels einer ABC Analyse. Das Lastmanagement kann dafür sorgen, dass Hilfsprozesse wie Umlagerungen in Zeiten mit schwacher Last, z.B. nachts, verlagert werden. Außerdem müssen Ein- und Umlagerstrategien auf die tatsächliche Anwendung hin optimiert werden.

Kontinuierliche Verbesserung

Der Energieverbrauch eines Logistikzentrums lässt sich stetig verbessern. Hierzu muss der Verbesserungsprozess kontinuierlich wiederholt werden. Den Ausgangspunkt bildet die Auswertung der Verbrauchsdaten, gefolgt von der Suche nach Verbesserungspotentialen. Nach deren Identifzierung folgt die Effizienzverbesserung. Deren Ergebnisse müssen gemessen, visualisiert und überwacht werden, bevor der Prozess von neuem beginnt.